陈浩 1,2,*魏凌 1,2李恩德 1,2何益 3,4[ ... ]张雨东 1,2
作者单位
摘要
1 中国科学院光电技术研究所,自适应光学重点实验室,四川 成都 610209
2 中国科学院大学材料科学与光电子技术学院,北京 100049
3 江苏材料光学重点实验室,江苏 苏州 215163
4 中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163
从斜率复原波前是夏克-哈特曼波前传感器这一类斜率采样探测器的核心流程。传统的复原算法中,区域法对局部波前的复原效果好,但易受斜率噪声的影响,同时空间分辨率较低;模式法抗噪能力强,但没有精确复原局部波前的能力。本文提出了基于B样条函数的快速复原算法,将波前展开为B样条曲面的线性组合,并将复原问题从斜率最小二乘问题转化为泊松方程,利用斜率的Taylor展开式估计散度,再通过超松驰迭代法进行快速求解。该方法将B样条函数的理论散度积分和实际散度估计分离,可以方便地扩展到不同阶次和不同节点数量的B样条基复原算法中。另外,通过改变散度估计的计算区域,可以灵活控制并平衡算法的局部复原能力和抗噪能力。对变形镜驱动器响应函数的测量实验表明,该方法具有较好的局部复原能力、抗噪能力和任意精度的空间分辨率。
B样条 波前复原 哈特曼波前传感器 B-spline function wavefront reconstruction Hartmann wavefront sensor 
光电工程
2021, 48(2): 200160
王媛媛 1,2,3,4,5,*何益 1,2魏凌 1,2李凌霄 1,2,3[ ... ]张雨东 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
4 温州医科大学附属眼视光医院,浙江 温州 325035
5 温州医科大学,浙江 温州 325035
针对三种不同空间分辨率的双压电片变形镜(Bimorph DM),采用仿真实验分析其对3~35 项Zernike 静态像差和实际人眼(包括疾病人眼)像差的拟合能力。实验表明,Bimorph 变形镜特别适用于校正低阶像差,拟合误差小于0.15,随着空间分辨率的增加,Bimorph 变形镜对Zernike 像差和人眼像差的拟合能力总体表现为增强的趋势,其中,35 单元的Bimorph 变形镜的像差拟合能力最优,对前20 项Zernike 像差的拟合误差稍优于传统分立式压电变形镜。通过对Bimorph 变形镜像差拟合能力的实验分析,为人眼视网膜高分辨率系统的Bimorph 变形镜选型提供了分析方法,也为进一步提升Bimorph 变形镜的像差校正能力奠定了研究基础。
自适应光学 双压电片变形镜 Zernike 像差 像差拟合 视网膜成像 adaptive optics bimorph deformable mirror(DM) Zernike aberrations aberration fitting retina imaging 
光电工程
2018, 45(12): 180103
Author Affiliations
Abstract
1 School of Optoelectronic Information, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
2 College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, P. R. China
3 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
4 School of Electronic and Communication Engineering, Guiyang University, Guiyang 550005, P. R. China
5 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
6 Chinese Academy of Sciences, The Key Laboratory on Adaptive Optics, Chengdu 610209, P. R. China
According to the speckle feature in Optical coherence tomography (OCT), images with speckle indicate not only noise but also signals, an improved wavelet hierarchical threshold filter (IWHTF) method is proposed. At first, a modified hierarchical threshold-selected algorithm is used to prevent signals from being removed by assessing suitable thresholds for different noise levels. Then, an improved wavelet threshold function based on two traditional threshold functions is proposed to trade-off between speckle removing and sharpness degradation. The de-noising results of an OCT finger skin image shows that the IWHTF method obtains better objective evaluation metrics and visual image quality improvement. When α=0.2, β=5.0 and K=1.2, the improved method can achieve 9.58 dB improvement in signal-to-noise ratio, with sharpness degraded by 3.81%.
Optical coherence tomography wavelets speckle 
Journal of Innovative Optical Health Sciences
2018, 11(3): 1850012
Yuanyuan Wang 1,2,3,4Yi He 1,2,*Ling Wei 1,2Xiqi Li 1,2[ ... ]Yudong Zhang 1,2
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 University of Chinese Academy of Sciences, Beijing 100039, China
3 School of Ophthalmology & Optometry and Eye Hospital, Wenzhou 325035, China
4 Wenzhou Medical University, Wenzhou 325035, China
A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitated with a Shack–Hartmann wavefront sensor, the bimorph DM-based AO operates closed-loop AO corrections for human eyes and reduces wavefront aberrations in most eyes to below 0.1 μm rms. Results from living eyes, including one exhibiting 5D of myopia and 2D of astigmatism along with notable high-order aberrations, reveal a practical efficient aberration correction and demonstrate a great benefit for retina imaging, including improving resolution, increasing brightness, and enhancing the contrast of images.
110.0110 Imaging systems 110.1080 Active or adoptive optics 170.1790 Confocal microscopy 
Chinese Optics Letters
2017, 15(12): 121102
作者单位
摘要
1 中国科学院光电技术研究所自适应光学重点实验室, 四川 成都 610209
2 中国科学院大学, 北京 100049
基于变形镜的激光束整形系统,具有控制灵活、适应性好、破坏阈值高等优点。为了提升变形镜作为相位调制元件的激光束整形系统性能,提出一种以最小二乘法拟合的驱动器控制电压为初始值的随机并行梯度下降算法优化驱动器控制电压的方法。通过驱动器正六边形排列的37 单元变形镜对不同大小的方形与圆形平顶激光束进行整形。数值仿真结果表明,在最小二乘法的基础上引入优化算法后,远场光强的目标区域均匀性及与理论光强的相似度均获得了改善,激光束整形系统性能得到提升。
自适应光学 光学设计 激光束整形 相位拟合 随机并行梯度下降算法 
激光与光电子学进展
2016, 53(2): 020101
Yi He 1,2,*Zhibin Wang 1,2,4Yuanyuan Wang 3,4Ling Wei 1,2[ ... ]Yudong Zhang 1,2
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College, Wenzhou 325035, China
4 University of Chinese Academy of Sciences, Beijing 100039, China
Facilitated with stochastic parallel gradient descent (SPGD) algorithm for wavefront sensorless correcting aberrations, an adaptive optics (AO) confocal fluorescence microscopy is developed and used to record fluorescent signals in vivo. Vessels of mice auricle at 80, 100 and 120 μm depth are obtained, and image contrast and fluorescence intensity are significantly improved with AO correction. The typical 10%–90% rise-time of the metric value measured is 5.0 s for a measured close-loop bandwidth of 0.2 Hz. Therefore, the AO confocal microscopy implemented with SPGD algorithm for robust AO corrections will be a powerful tool for study of vascular dynamics in future.
110.0110 Imaging systems 170.0170 Medical optics and biotechnology 170.1790 Confocal microscopy 170.0180 Microscopy 
Chinese Optics Letters
2015, 13(11): 111702
Author Affiliations
Abstract
1 The Key Laboratory on Adaptive Optics Chinese Academy of Sciences Chengdu 610209, P. R. China
2 Institute of Optics and Electronics Chinese Academy of Sciences Chengdu 610209, P. R. China
3 Department of Ophthalmology Peking University Third Hospital Beijing 100191, P. R. China
A multi-GPU system designed for high-speed, real-time signal processing of optical coherence tomography (OCT) is described herein. For the OCT data sampled in linear wave numbers, the maximum processing rates reached 2.95 MHz for 1024-OCT and 1.96 MHz for 2048-OCT. Data sampled using linear wavelengths were re-sampled using a time-domain interpolation method and zero-padding interpolation method to improve image quality. The maximum processing rates for 1024-OCT reached 2.16MHz for the time-domain method and 1.26MHz for the zero-padding method. The maximum processing rates for 2048-OCT reached 1.58 MHz, and 0.68MHz, respectively. This method is capable of high-speed, real-time processing for OCT systems.
Optical coherence tomography real-time signal processing multi graphics processing units 
Journal of Innovative Optical Health Sciences
2014, 7(3): 1450010
作者单位
摘要
1 中国科学院光电技术研究所 中国科学院自适应光学重点实验室, 四川 成都 610209
2 复旦大学附属眼耳鼻喉科医院, 上海 200031
青光眼是全球第二位的致盲疾病。青光眼的发病机理尚未完全明确,但是房水循环受阻引起的高眼压被认为是主要成因。而作为我国发病率最高的青光眼类型,开角型青光眼的其房水循环阻力点一直未能明确。大量的前期动物和离体解剖实验表明,前房角施氏管的形态改变,可能是引起房水受阻的因素。为此,本课题组已研制了专门用于眼前节房角成像的扫频光源光学想干层析成像系统,成功地实现了正常被测者和开角型青光眼患者的施氏管成像,并顺利地开展了一系列的形态学测量与比对研究。回顾了课题组在该方向的研究过程,并对未来的研究进行展望。
医用光学 光学相干层析成像 开角型青光眼 施氏管 
激光与光电子学进展
2013, 50(8): 080014
XIQI LI 1,2,3GUOHUA SHI 1,2,3,*LING WEI 1,2,3ZHIHUA DING 4YUDONG ZHANG 1,2
Author Affiliations
Abstract
1 The Laboratory on Adaptive Optics Institute of Optics and Electronics Chinese Academy of Sciences, Chengdu 610209, China
2 The Key Laboratory on Adaptive Optics Chinese Academy of Sciences, Chengdu 610209, China
3 Graduate School of Chinese Academy of Sciences Beijing 100080, China
4 State Key Laboratory of Modern Optical Instrumentation Zhejiang University, Hangzhou 310027, China
Sensitivity and data processing speed are important in spectral domain Optical Coherence Tomography (SD-OCT) system. To get a higher sensitivity, zero-padding interpolation together with linear interpolation is commonly used to re-sample the interference data in SD-OCT, which limits the data processing speed. Recently, a time-domain interpolation for SD-OCT was proposed. By eliminating the huge Fast Fourier Transform Algorithm (FFT) operations, the operation number of the time-domain interpolation is much less than that of the zero-padding interpolation. In this paper, a numerical simulation is performed to evaluate the computational complexity and the interpolation accuracy. More than six times acceleration is obtained. At the same time, the normalized mean square error (NMSE) results show that the time-domain interpolation method with cut-off length L = 21 and L = 31 can improve about 1.7 dB and 2.1 dB when the distance mismatch is 2.4mm than that of zero-padding interpolation method with padding times M = 4, respectively. Furthermore, this method can be applied the parallel arithmetic processing because only the data in the cut-off window is processed. By using Graphics Processing Unit (GPU) with compute unified device architecture (CUDA) program model, a frame (400 A-lines × 2048 pixels × 12 bits) data can be processed in 6 ms and the processing capability can be achieved 164,000 line/s for 1024-OCT and 71,000 line/s for 2048-OCT when the cut-off length is 21. Thus, a high-sensitivity and ultra-high data processing SD-OCT is realized.
SD-DCT time-domain interpolation GPU CUDA data processing 
Journal of Innovative Optical Health Sciences
2011, 4(3): 325
XIQI LI 1,2,3GUOHUA SHI 1,2,3,*YUDONG ZHANG 1,2
Author Affiliations
Abstract
1 The Laboratory on Adaptive Optics Institute of Optics and Electronics Chinese Academy of Sciences Chengdu 610209, China
2 The Key Laboratory on Adaptive Optics Chinese Academy of Sciences Chengdu 610209, China
3 Graduate School of the Chinese Academy of Sciences Beijing 100039, China
The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in a lot of medical applications. Recently, a time-domain interpolation method was proposed. This method can get better signal-to-noise ratio (SNR) but much-reduced signal processing time in SD-OCT data processing as compared with the commonly used zeropadding interpolation method. Additionally, the resampled data can be obtained by a few data and coefficients in the cutoff window. Thus, a lot of interpolations can be performed simultaneously. So, this interpolation method is suitable for parallel computing. By using graphics processing unit (GPU) and the compute unified device architecture (CUDA) program model, time-domain interpolation can be accelerated significantly. The computing capability can be achieved more than 250,000 A-lines, 200,000 A-lines, and 160,000 A-lines in a second for 2,048 pixel OCT when the cutoff length is L = 11, L = 21, and L = 31, respectively. A frame SD-OCT data (400A-lines×2,048 pixel per line) is acquired and processed on GPU in real time. The results show that signal processing time of SD-OCT can be finished in 6.223 ms when the cutoff length L = 21, which is much faster than that on central processing unit (CPU). Real-time signal processing of acquired data can be realized.
Optical coherence tomography real-time signal processing graphics processing unit GPU CUDA 
Journal of Innovative Optical Health Sciences
2011, 4(1): 89 95

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!